skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Speer, Samantha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We draw on constructionism to design a group rope weaving activity as an illustration of concepts in matrix algebra. The study, conducted in an undergraduate Informatics class, involved a rope-weaving activity to assess the concept of cloth separability and the matrix representation of weaving patterns. Results showed significant learning gains, with distinct approaches observed: one group emphasizing physical manipulation, the other relying on mathematical principles. This study underscores the value of tangible engagement in understanding abstract concepts. 
    more » « less
  2. Weaving is a fabrication process that is grounded in mathematics and engineering: from the binary, matrix-like nature of the pattern drafts weavers have used for centuries, to the punch card programming of the first Jacquard looms. This intersection of disciplines provides an opportunity to ground abstract mathematical concepts in a concrete and embodied art, viewing this textile art through the lens of engineering. Currently, available looms are not optimized to take advantage of this opportunity to increase mathematics learning by providing hands-on interdisciplinary learning in collegiate classrooms. In this work, we present SPEERLoom: an open-source, robotic Jacquard loom kit designed to be a tool for interweaving cloth fabrication, mathematics, and engineering to support interdisciplinary learning in the classroom. We discuss the design requirements and subsequent design of SPEERLoom. We also present the results of a pilot study in a post-secondary class finding that SPEERLoom supports hands-on, interdisciplinary learning of math, engineering, and textiles. 
    more » « less
  3. Our work aims to increase the collaborative ability of college students in computer science classrooms where students must work towards a shared goal with peers from different backgrounds and abilities. Our work focuses specifically on leveraging high-quality collaborative design to bridge the gap between fiber arts and robotics by enlightening students to their shared foundations in mathematics and computational thinking. We achieve this goal through the design of SPEERLoom (Semi-automated Pattern Executing Educational Robotic Loom), a new open-source Jacquard loom kit designed to foster students' exploration of weaving, mechatronics, mathematics, and computational thinking. In this demonstration we present SPEERLoom and allow the exploration of a sample lesson using the loom. 
    more » « less
  4. At its core, collaboration is about bringing diverse perspectives together to create something new. Diversity may arise along a multiplicity of dimensions, leading to some very similar challenges, and other dimension-specific challenges, each of which require discrete skills to address. Interdisciplinary collaboration, while understudied, has particular workplace relevance. This research seeks to understand what is specific to interdisciplinary collaboration as part of a broader agenda to operationalize key underlying skills that enable interdisciplinary collaboration and subsequently assess and support interdisciplinary collaboration, both in the classroom and in the workplace. The aim of this poster presentation is to engage the community in an intellectual exchange about underlying questions to inform work in progress. 
    more » « less
  5. Understanding abstract concepts in mathematics has continuously presented as a challenge, but the use of directed and spontaneous gestures has shown to support learning and ground higher-order thought. Within embodied learning, gesture has been investigated as part of a multimodal assemblage with speech and movement, centering the body in interaction with the environment. We present a case study of one dyad’s undertaking of a robotic arm activity, targeting learning outcomes in matrix algebra, robotics, and spatial thinking. Through a body syntonicity lens and drawing on video and pre- and post- assessment data, we evaluate learning gains and investigate the multimodal processes contributing to them. We found gesture, speech, and body movement grounded understanding of vector and matrix operations, spatial reasoning, and robotics, as anchored by the physical robotic arm, with implications for the design of learning environments that employ directed gestures. 
    more » « less
  6. null (Ed.)